

Cobalt-Catalyzed Addition of Arylzinc Reagents to Norbornene Derivatives through 1,4-Cobalt Migration

Boon-Hong Tan and Naohiko Yoshikai*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Supporting Information

ABSTRACT: A cobalt-diphosphine catalyst promotes the addition of an arylzinc reagent to a norbornene derivative to afford *o*-(2-*exo*-norbornyl)arylzinc species. This "migratory arylzincation" reaction is considered to involve insertion of norbornene into an arylcobalt species, alkyl-to-aryl 1,4-cobalt migration, and transmetalation between the resulting *o*-(2-*exo*-

norbornyl)arylcobalt species and the arylzinc reagent. The *o*-(2-*exo*-norbornyl)arylzinc species can be intercepted by common organic electrophiles under copper or palladium catalysis.

R emote metal migrations of organorhodium and -palladium species, 1,4-migration in particular, have been extensively utilized to achieve novel catalytic transformations involving C– H activation and cascade bond forming processes.^{1–3} With respect to the rhodium catalysis, the origin of this particular area of research dates back to two seminal reports in the early 2000s. In 2000, Miura and co-workers reported a rhodium-catalyzed merry-go-round addition reaction of an arylboronic acid to norbornene (Scheme 1a).⁴ The reaction affords multiply norbonylated arenes through repetition of a sequence consisting of insertion of norbornene into arylrhodium species and alkyl-toaryl 1,4-rhodium migration. One year later, Hayashi and coworkers reported on rhodium-catalyzed hydroarylation of an intenal alkyne with an arylboronic acid, revealing its mechanism

Scheme 1. Rhodium and Cobalt Catalysis Involving 1,4-Metal Migration

(a) Miura et al. (2000)

involving 1,4-rhodium migration (Scheme 1b).⁵ Thus, this apparently simple reaction goes through insertion of the alkyne into an arylrhodium species, vinyl-to-aryl 1,4-rhodium migration, and protoderhodation of the resulting o-alkenylarylrhodium species.

Recently, we disclosed the first example of 1,4-cobalt migration in a cobalt-catalyzed addition of an arylzinc reagent to an internal alkyne (Scheme 1c).^{6,7} Compared to the rhodium-catalyzed hydroarylation, the reaction is unique in that it produces *o*-alkenylarylzinc species, which can be intercepted by an external electrophile. This "migratory arylzincation" also finds its application in modular synthesis of benzoheterole derivatives.⁸ Here, we report that a cobalt complex is also capable of catalyzing migratory arylzincation of norbornene derivatives (Scheme 1d). Thus, unlike the rhodium-catalyzed merry-goround addition, the present reaction affords *o*-(2*-exo*-norbornyl)-arylzinc species through alkyl-to-aryl cobalt migration and subsequent cobalt-to-zinc transmetalation. The reaction is also reminiscent of Catellani's palladium-catalyzed coupling reactions involving norbornene.⁹

The present study began with a screening of cobalt catalysts for the addition of 4-methoxyphenylzinc reagent (1a, 1.7 equiv; prepared from a 1:2 mixture of ZnCl₂·TMEDA and 4-MeOC₆H₄MgBr and denoted as type A reagent) to norbornene 2a, which was conducted at 60 °C for 12 h (Table 1). A CoCl₂– Xantphos catalyst, which is the optimum catalyst for the migratory arylzincation to an internal alkyne,⁶ exhibited poor catalytic activity, affording the arylation product 3aa only in a low yield of 2% (entry 1). Upon subsequent screening of common diphosphine ligands (entries 2–8), we identified dppf as the most effective ligand, which promoted the addition reaction to afford 3aa in 69% yield (entry 3). Among other diphosphine ligands, dppp, dppb, and BISBI (2,2'-bis(diphenylphosphino-

 Received:
 May 19, 2014

 Published:
 June 6, 2014

Table 1. Screening of Reaction Conditions^a

Type A: ZnCl₂•TMEDA + 2ArMgBr Type B: ZnCl₂•TMEDA + ArMgBr Type C: ZnCl2•TMEDA + ArMgBr + Me₃SiCH₂MgCl

entry	ArZnX type	ligand	yield ^{b} (%)
1	Α	Xantphos	2
2	Α	DPEphos	6
3	Α	dppf	69
4	Α	dppe	18^c
5	Α	dppp	38
6	Α	dppb	35
7	Α	dppbz	3 ^c
8	Α	BISBI	42
9^d	Α	PPh ₃	7
10	Α	none	1
11^e	Α	dppf	76
12^e	В	dppf	<1
13 ^f	С	dppf	82

^{*a*}Unless otherwise noted, the reaction was performed on a 0.3 mmol scale and was quenched with H₂O. ^{*b*}Determined by GC using *n*-tridecane as an internal standard. ^{*c*}1,2-Di-2-norbonylated product was obtained (44% and 34% for entries 4 and 7, respectively). ^{*d*}10 mol % of PPh₃ was used. ^{*e*}The reaction was performed with 1.2 equiv of arylzinc reagent at 40 °C for 18 h. ^{*f*}The reaction was performed with 1.5 equiv of arylzinc reagent at 40 °C for 12 h and quenched with D₂O. The yield was determined by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard.

methyl)-1,1'-biphenyl) exhibited moderate performances, affording **3aa** in ca. 40% yield (entries 5, 6, and 8), while DPEphos was almost ineffective (entry 2). Interestingly, the reaction using dppe or dppbz as the ligand produced, like Miura's merry-goround reaction (Scheme 1a), a 1,2-di-2-norbonylated product in ca. 30–40% yield, as judged from GC and GCMS analysis of the reaction mixture (entries 4 and 7). Monodentate phosphines such as PPh₃ as well as a ligand-free system were not effective (entries 9 and 10).

Upon further examination of reaction conditions, we found that the Co-dppf-catalyzed addition reaction could be achieved with a reduced amount of the type A arylzinc reagent (1.2-1.5)equiv) at a lower temperature of 40 °C (entry 11). Unlike the migratory arylzincation reaction to internal alkynes,⁶ a monoarylzinc reagent prepared from a 1:1 mixture of ZnCl₂· TMEDA and 4-MeOC₆H₄MgBr (type B reagent) as well as one prepared from 4-MeOC₆H₄I and Zn·LiCl¹⁰ were almost unreactive (entry 12), indicating that only one of two aryl groups on the type A reagent is transferable in the present reaction. The reactivity of this unreactive reagent could be restored by the addition of a "dummy" Grignard reagent, i.e., Me₃SiCH₂MgCl. Thus, the mixed diorganozinc reagent (type C reagent) underwent addition to 2a, and upon quenching with D₂O, afforded a deuterated adduct 3aa-d in 82% yield (entry 13).¹¹ The ¹H NMR spectrum of **3aa**-*d* showed an integration of 1.12 for the position ortho to the 2-norbornyl group, indicating substantial deuterium incorporation into this position and hence formation of an o-(2-exo-norbornyl)arylzinc species via 1,4cobalt migration. Consistent with this, all of the norbornyl carbon atoms of **3aa**-*d* appeared as clear singlet signals in the ${}^{13}C$

NMR spectrum, demonstrating that the 3-*exo*-position of the norbornyl group was virtually not deuterated.

The putative 1,4-cobalt migration process was further supported by another deuterium-labeling experiment (Scheme 2). Thus, the addition of pentadeuteriophenylzinc reagent $1\mathbf{b}$ - d_5

Scheme 2. Reaction of Pentadeuteriophenylzinc Reagent^a

 $^a{\rm The}$ proton content on each carbon atom was estimated by $^{\rm l}{\rm H}$ NMR analysis.

(type **A**) to **2a** under the cobalt–dppf catalysis took place with concomitant migration of one of the *o*-deuterium atoms to the *exo*-2-norbornyl position, as revealed by ¹H NMR analysis of the product **3ba**- d_5 .

Having established the cobalt-diphosphine catalytic system, we next explored the scope of the present migratory arylzincation reaction using different arylzinc reagents and norbornene derivatives (Scheme 3). Note that each reaction was quenched with D_2O in order to confirm the 1,4-cobalt migration process. First, we performed reactions of a series of arylzinc reagents with norbornene 2a. 4-(Trimethylsilyl)phenylzinc and 4-tert-butylphenylzinc reagents afforded the desired adducts 3ca-d and 3dad in excellent yields. On the other hand, the reaction of 4fluorophenylzinc reagent resulted in the formation of a mixture of mono- and diaddition products 3ea-d and 4ea-d in an approximate ratio of 1:1 (Scheme 4a). The latter product would have been formed through a merry-go-round process as proposed for Miura's rhodium-catalyzed reaction.⁴ No desired reaction was observed with electron-poor 4-(trifluoromethyl)phenylzinc reagent. As was the case with the migratory arylzincation of alkynes,⁶ the *meta*-oxygen atom of 3-methoxyand 3,4-methylenedioxyphenylzinc reagents caused secondary directing effect to induce regioselective 1,4-metal migration to its proximity (see 3ga-d and 3ha-d). 3,5-Dimethoxyphenylzinc reagent also afforded the desired adduct 3ia-d in an excellent yield. The reaction of 2-naphthylzinc reagent took place cleanly through exclusive 1,4-migration to the less hindered 3-position, thus affording the adduct 3ja-d. Like the case of 4fluorophenylzinc reagent (Scheme 4a), a merry-go-round process was observed in the reaction of 2-methoxyphenylzinc reagent, which afforded a mixture of mono-, di-, and triaddition products 3ka-d, 4ka-d, and 5ka-d, respectively (Scheme 4b). Note that mesitylzinc reagent failed to participate in the reaction.

A norbornene derivative bearing an *endo*-diester moiety **2b** failed to participate in the reaction with 4-methoxyphenylzinc reagent under the Co-dppf catalysis. However, the use of dppe instead of dppf promoted the reaction to afford the desired product **3ab**-*d* in 70% yield. 4-Fluoro-, 3-methoxy-, 3,4-methylenedioxy-, and 3,5-dimethoxyphenylzinc reagents also underwent addition to **2b** to afford the corresponding adducts **3eb**-*d*, **3gb**-*d*, **3hb**-*d*, and **3ib**-*d*, respectively, albeit in modest yields. Curiously, the reaction of 3-methoxyphenylzinc reagent and **2b** exhibited the opposite regioselectivity to that observed in the reaction of the same reagent with **2a** (see **3ga**-*d*), thus resulting in deuteration of the position distal to the methoxy

^{*a*}The reaction was performed on a 0.5 mmol scale. Unless otherwise noted, type **A** arylzinc reagent was used, and the isolated yield is shown. ^{*b*}Type **C** arylzinc reagent was used. ^{*c*}The yield was determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. ^{*d*}Merry-go-round addition was observed (see Scheme 4). ^{*e*}Dppe was used instead of dppf. ^{*f*}Obtained as a diastereomeric mixture.

group (see **3gb**-*d*), while the regioselectivity did not change for 3,4-methylenedioxyphenylzinc reagent (see **3ha**-*d* and **3hb**-*d*). Note that some of these reactions produced a mixture of diastereomers, presumably due to epimerization of the α -positions of the diester moiety. The reactions of 3-methoxyphenyl- and 2-methoxyphenylzinc reagents with an *endo*-diether **2c** took place under the Co-dppf catalysis and afforded the corresponding adducts **3gc**-*d* and **3kc**-*d*, respectively, albeit in low yields. In the former case, deuteration took place at the position proximal to the methoxy group. Note also that, in these low-yielding cases, the norbornene derivative was largely recovered without affording any byproducts.

The reaction of 4-methoxyphenylzinc reagent 1a with oxabicyclic alkene 2d did not afford a migratory arylzincation product, but resulted in a ring-opening arylation product 6 (Scheme 4c).¹² Attempts to suppress the β -oxygen elimination process by using less reactive arylzinc reagent (i.e., type B

^{*a*}cat. Co = $CoCl_2$ (5 mol %), dppf (5 mol %). The identities and quantities of norbornylated products were estimated by ¹H NMR, GC, and GCMS analysis of the product mixture. The yields in parentheses are based on 2a.

reagent) or by lowering the reaction temperature did not change the course of the reaction. 13

The o-(2-exo-norbornyl)arylzinc species formed by the present reaction is amenable to transition-metal-catalyzed cross-coupling with organic electrophiles (Scheme 5).¹⁴ The reaction of 4-(trimethylsilyl)phenylzinc reagent 1c and 2a was followed by copper-catalyzed allylation with allyl bromide and acylation with benzoyl chloride to afford the desired products 7 and 8, respectively, in excellent yields.¹⁵ The same o-(2-exo-norbornyl)arylzinc intermediate also participated in the Negishi

^aCuCN·2LiCl (20 mol %), allyl bromide (3 equiv), 60 °C, 8 h. ^bCuCN·2LiCl (20 mol %), benzoyl chloride (3 equiv), 60 °C, 8 h. ^cPd(OAc)₂ (4 mol %), SPhos (4 mol %), ethyl 4-iodobenzoate (3 equiv), 60 °C, 8 h.

coupling with ethyl 4-iodobenzoate under Pd/SPhos catalysis, affording the biaryl product **9** in a moderate yield.

A proposed catalytic cycle for the present migratory arylzincation is shown in Scheme 6. An arylcobalt species A

Scheme 6. Proposed Catalytic Cycle

generated from the cobalt precatalyst and the arylzinc reagent undergoes insertion of norbornene to give a norbornylcobalt species **B**. This species undergoes alkyl-to-aryl 1,4-cobalt migration presumably through a C-H oxidative addition intermediate C,^{2d,4} thus affording an o-(2-exo-norbornyl)arylcobalt species **D**. Subsequent transmetalation between **D** and the arylzinc reagent furnishes the o-(2-exo-norbornyl)arylcinc species and regenerates the arylcobalt species **A**.

In summary, we have reported on a cobalt—diphosphinecatalyzed addition reaction of an arylzinc reagent to a norbornene derivative, which involves alkyl-to-aryl 1,4-cobalt migration and cobalt-to-zinc transmetalation as key steps, thus affording o-(2-exo-norbornyl)arylzinc species. The arylzinc product is amenable to common electrophilic trapping reactions under copper or palladium catalysis. Further mechanistic and synthetic investigations into catalytic transformations involving 1,4-cobalt migration are currently underway.

ASSOCIATED CONTENT

Supporting Information

Experimental details and characterization of new compounds. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: nyoshikai@ntu.edu.sg.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by Singapore National Research Foundation (NRF-RF2009-05), Nanyang Technological University, and JST, CREST.

REFERENCES

(1) (a) Ma, S.; Gu, Z. Angew. Chem., Int. Ed. **2005**, 44, 7512. (b) Miura, T.; Murakami, M. Chem. Commun. **2007**, 217. (c) Shi, F.; Larock, R. C. Top. Curr. Chem. **2010**, 292, 123.

(2) For representative examples of rhodium migrations, see: (a) Ishida, N.; Shimamoto, Y.; Yano, T.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 19103. (b) Zhang, J.; Liu, J.-F.; Ugrinov, A.; Pillai, A. F. X.; Sun, Z.-M.; Zhao, P. J. Am. Chem. Soc. 2013, 135, 17270. (c) Tobisu, M.; Hasegawa, I.; Kita, Y.; Kinuta, H.; Chatani, N. Chem. Commun. 2012, 48, 11437. (d) Sasaki, K.; Nishimura, T.; Shintani, R.; Kantchev, E. A. B.; Hayashi, T. Chem. Sci. 2012, 3, 1278. (e) Matsuda, T.; Suda, Y.; Takahashi, A. Chem. Commun. 2012, 48, 2988. (f) Shintani, R.; Isobe, S.; Takeda, M.; Hayashi, T. Angew. Chem., Int. Ed. 2010, 49, 3795. (g) Seiser, T.; Roth, O. A.; Cramer, N. Angew. Chem., Int. Ed. 2009, 48, 6320. (h) Shigeno, M.; Yamamoto, T.; Murakami, M. Chem.-Eur. J. 2009, 15, 12929. (i) Panteleev, J.; Menard, F.; Lautens, M. Adv. Synth. Catal. 2008, 350, 2893. (j) Shintani, R.; Takatsu, K.; Katoh, T.; Nishimura, T.; Hayashi, T. Angew. Chem., Int. Ed. 2008, 47, 1447. (k) Shintani, R.; Takatsu, K.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 3735. (1) Matsuda, T.; Shigeno, M.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12086. (m) Yamabe, H.; Mizuno, A.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2005, 127, 3248. (n) Shintani, R.; Okamoto, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 2872. (o) Miura, T.; Sasaki, T.; Nakazawa, H.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1390.

(3) For selected examples of palladium migrations, see: (a) Zhou, J.;
He, J.; Wang, B.; Yang, W.; Ren, H. J. Am. Chem. Soc. 2011, 133, 6868.
(b) Campo, M. A.; Zhang, H.; Yao, T.; Ibdah, A.; McCulla, R. D.; Huang, Q.; Zhao, J.; Jenks, W. S.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 6298. (c) Zhao, J.; Yue, D.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288. (d) Masselot, D.; Charmant, J. P. H.; Gallagher, T. J. Am. Chem. Soc. 2006, 128, 694.

(4) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem. Soc. 2000, 122, 10464.

(5) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem. Soc. 2001, 123, 9918.

(6) Tan, B.-H.; Dong, J.; Yoshikai, N. Angew. Chem., Int. Ed. 2012, 51, 9610.

(7) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208.

(8) (a) Wu, B.; Yoshikai, N. Angew. Chem., Int. Ed. 2013, 52, 10496.
(b) Wu, B.; Santra, M.; Yoshikai, N. Angew. Chem., Int. Ed. 2014, DOI: 10.1002/anie.201404019.

(9) (a) Catellani, M. Synlett 2003, 298. (b) Catellani, M.; Motti, E.; Della Ca', N. Acc. Chem. Res. 2008, 41, 1512.

(10) (a) Jin, M.-Y.; Yoshikai, N. J. Org. Chem. 2011, 76, 1972.
(b) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 6040.

(11) In this and some other cases, it was difficult to isolate the addition product in a pure form because of small polarity differences among the product and hydrolyzed/homocoupling products of the arylzinc reagent. In such cases, the crude product mixture was subjected to short silica gel chromatography, and the yield was determined by ¹H NMR analysis of the thus-obtained sample using 1,1,2,2-tetrachloro-ethane as an internal standard. See the Supporting Information for the details of each case.

(12) For reviews on transition-metal-catalyzed ring-opening alkylation of oxa- and azabicyclic alkenes, see: (a) Lautens, M. *Synlett* **1993**, 177.
(b) Chiu, P.; Lautens, M. *Top. Curr. Chem.* **1997**, *190*, 1. (c) Lautens, M.; Fagnou, K.; Hiebert, S. *Acc. Chem. Res.* **2003**, *36*, 48. (d) Rayabarapu, D. K.; Cheng, C.-H. *Acc. Chem. Res.* **2007**, *40*, 971.

(13) For arylzincation of oxa- and azabicyclic alkenes promoted by an iron-diphosphine catalyst, see: Ito, S.; Itoh, T.; Nakamura, M. *Angew. Chem., Int. Ed.* **2011**, *50*, 454.

(14) Quenching of the reaction with iodine afforded o-(2-norbornyl) aryl iodide, which was, however, difficult to isolate in a pure form due to formation of other unidentified byproducts.

(15) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.